POLYMER SILVER CONDUCTOR

1901-S

RoHS Compliant

Polymer Silver For Low Temperature Substrates

ESL 1901-S is a silver-filled, flexible resin material designed for use as a conductor on low-temperature substrates. This silver conductor may be used in the manufacture of four and five wire analogue resistive touch panels, for printed antennas in RFID applications and as conductors in flexible solar cells. After screen-printing and curing the silver film remains reasonably flexible and the resistance of the conductor remains constant over time. This versatile polymer has also been successfully used on other substrates such as cloth.

PASTE DATA

Rheology: Thixotropic, screen-printable paste

Viscosity:
- (Brookfield RVT, 1 rpm, No. 6 spindle, 25.5 ± 0.5 °C) 170 ± 10 Pa.s
- Shelf Life (at 5 - 25 °C): 6 months

PROCESSING

Screen Mesh, Emulsion: 200 or 325 S/S, 25 µm

Curing Schedule: 125°C / 10 min

Substrate for Calibration: PVC plastic card

Thinner: ESL 659

See Caution and Disclaimer on other side.
TYPICAL PROPERTIES

Cured Thickness:
(measured on a 100 mm x 0.25 mm conductor track) 25 - 35 μm

Approximate Coverage:
100 cm²/g

Resistivity:
(measured on a 100 mm x 0.25 mm conductor track) < 20 mΩ/□

Printing Resolution:
(line/space) 0.25 mm / 0.25 mm

*None of the six substances referred to in the RoHS Directive (2002/95/EC) are used in the formulation of this product.

CAUTION: Proper industrial safety precautions should be exercised in using these products. Use with adequate ventilation. Avoid prolonged contact with skin or inhalation of any vapours emitted during use or heating of these compositions. The use of safety eye goggles, gloves or hand protection creams is recommended. Wash hands or skin thoroughly with soap and water after using these products. Do not eat or smoke in areas where these materials are used. Refer to appropriate MSDS sheet.

DISCLAIMER: The product information and recommendations contained herein are based on data obtained by tests we believe to be accurate, but the accuracy and completeness thereof is not guaranteed. No warranty is expressed or implied regarding the accuracy of these data, the results obtained from the use hereof, or that any such use will not infringe any patent. ElectroScience assumes no liability for any injury, loss, or damage, direct or consequential, arising out of its use by others. This information is furnished upon the condition that the person receiving it shall make his own tests to determine the suitability thereof for his particular use, before using it. User assumes all risk and liability whatsoever in connection with his intended use. ElectroScience’s only obligation shall be to replace such quantity of the product proved defective.